
Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

Chapter 5

Web-Based Corpus Software

Saturnino Luz

5.1 Introduction

What is a web-based corpus and what is web-based corpus software? The answer
is, strictly speaking, that there is no such thing as web-based corpus software.
However, one should not be discouraged by this rather negative assessment.
In fact, if one examines the title closely, different bracketings of the phrase
might suggest interesting possibilities. For example, if one chooses to write it
as ‘(web-based corpus) software’, the emphasis falls on the idea of the World
Wide Web as a large corpus. It is, however, a very chaotic one. It is chaotic in
the sense that it is diffi cult for its users to account for and control the sort of
phenomena such a large and dynamic repository might refl ect when explored,
say, through an ordinary search engine. This makes the task of formulating
and testing hypotheses extremely diffi cult. All sorts of ‘noise’ might creep in:
there are texts written by native and non-native writers, computer-generated
text (e.g. text resulting from the ubiquitous web-page translation services cur-
rently on offer), duplication, and other forms of text which do not conform to
standard norms. Little, if anything, can be done to guarantee the quality or
integrity of the data being used. Still, this chaotic, noisy environment can be
of some use to the statistically minded (computational) linguist. To borrow an
example from Manning and Schütze (1999), one could use the web to decide
which of the following word sequences to treat as a language unit: ‘strong
coffee’ or ‘powerful coffee’. A quick search reveals over 30,000 occurrences
of ‘strong coffee’ against just over 400 occurrences of ‘powerful coffee’, thus
indicating that the former forms a collocation pattern while the latter appar-
ently does not.

In contrast, should one wish to write ‘web-based corpus software’ as ‘web-
based (corpus software)’, the emphasis clearly falls on ‘corpus software’, of
which web-based corpus software would simply be one type. In other words,
one could simply regard the Web as the medium through which better con-
structed, human-designed corpora can be searched and studied by a large

9781441115812_Ch05_Rev_txt_prf.indd 1249781441115812_Ch05_Rev_txt_prf.indd 124 4/23/2011 5:05:17 PM4/23/2011 5:05:17 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

 Web-Based Corpus Software 125

community of geographically dispersed researchers. Many tools have undoubt-
edly been designed which do just that, including the Translational English
Corpus (TEC) system (Luz and Baker 2000). The main shortcoming of this
approach stems from the very fact that it is better defi ned. One of the attract-
ive aspects of the World Wide Web is that all stages of information exchange
are distributed. That is, in principle, anyone can provide and access any data.
Information consumers benefi t from a simple and intuitive access model
(hypertext) and the widespread availability of web-browsing software on virtu-
ally all platforms. More importantly, all an information consumer who wishes
to become an information provider needs to do is learn a few idioms of a simple
mark-up language (HTML). By using more specialized tools, such as corpus
servers and clients, this fl exibility is lost. And with fl exibility goes the dream of
a massive (and therefore statistically attractive), self-maintained corpus.

This chapter presents and discusses recent advances in tools, technologies
and standards which might enable the corpus research community to bring
about the basics of an infrastructure for creating and sharing distributed,
dynamic and widely accessible corpora. The end result may still be a far cry
from the dream of using the entire web as an evolving corpus, but it will cer-
tainly advance the idea that implementing a world-wide web of corpora is feas-
ible, thus rendering moot the ambiguity in the title of this chapter. Since the
above-mentioned infrastructure does not exist at present, we will necessarily
have to focus on corpus software and tools that use the Web (or, more appro-
priately, the internet) as a communication medium. We start by presenting an
overview of the technology involved, describe the model adopted by the TEC
system to support remote access to a corpus of translated English, and fi nally
discuss perspectives for future research in this area.

This overview of web technologies covers the main tools for data storage and
mark-up, text indexing and retrieval, and the issue of distributed storage of
corpora. It also addresses, though superfi cially, the issue of creating and main-
taining metadata, including storage and database management. The aspects
of text indexing and retrieval covered include tokenization, data structures
for indices and search. Ways of moving from storage of an individual corpus
to distributed storage of collections of corpora, and the non-technical issue
this entails, namely, copyright, are also discussed. These issues are illustrated
through a case study: the Translational English Corpus (TEC) system. We end
the chapter by presenting a vision for web-based corpus software: its overall
architecture and development philosophy.

5.2 The Internet and Corpus Software

The internet technologies presented and discussed below have not been devel-
oped specifi cally to deal with corpora, or even text, though text comprises the

9781441115812_Ch05_Rev_txt_prf.indd 1259781441115812_Ch05_Rev_txt_prf.indd 125 4/23/2011 5:05:18 PM4/23/2011 5:05:18 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

126 Corpus-Based Translation Studies

vast majority of data available on the internet. In what follows, we describe a
selection of those technologies which have been found to be particularly use-
ful for text storage and retrieval in the Translational English Corpus (TEC)
project, namely: mark-up languages, indexing techniques and the client-server
architecture. This represents a large array of technologies which are covered
only partially and superfi cially, as the contribution aims to give the reader
a perspective of the bigger picture and the possibilities it suggests for cor-
pus research, rather than its details. References to the relevant literature are
included in each section.

The TEC corpus is a collection of English texts translated from a wide
variety of languages, both European and non-European, and is held at the
University of Manchester (Baker 1999). It consists of four sub-corpora: fi ction,
biography, news and in-fl ight magazines. The corpus is an expanding collec-
tion which contains more than ten million indexed words, and ‘headers’ which
store a variety of extralinguistic data about each text in the collection (known
as metadata).

Although the individual texts that make up TEC are not directly available
in full, researchers can access them over the internet, and run different
types of analyses on the corpus or selected subsets of it through a set of
software tools available from the TEC website. These tools support standard
corpus analysis functionality, such as concordancing, as well as functional-
ity specifi cally designed to allow translation researchers to explore differ-
ent hypotheses by constraining search parameters derived from metadata.
Possible search modes include selection by source language, by translator,
by author, gender, nationality, and so on. For examples of how this function-
ality can be used and a discussion of its signifi cance for translation studies
see Baker (1999).

As a stochastic entity, the usefulness of a corpus is invariably dependent on
its size and composition. Large amounts of text are needed if a corpus is to
signifi cantly refl ect general language phenomena. For the sort of investiga-
tion carried out in corpus-based translation studies, where the corpus user is
interested in discovering patterns inherent to a particular type of language,
the constraints and mechanisms these patterns might refl ect and so on, care-
ful attention must be paid to text selection and documentation of extralinguis-
tic features that might have a bearing on the sort of phenomena of which the
corpus is supposed to provide samples. Together with legal constraints such as
the need to protect copyright, corpus size and composition concerns dictate
the main requirements for the software infrastructure: it must provide means
for effi cient physical storage and retrieval of data, and a loosely coupled, but
secure and fi ne-grained database layout. The fi rst step towards meeting these
requirements is to supply the corpus designer with a simple and fl exible way to
annotate the data and encode metadata for further processing by other soft-
ware modules.

9781441115812_Ch05_Rev_txt_prf.indd 1269781441115812_Ch05_Rev_txt_prf.indd 126 4/23/2011 5:05:18 PM4/23/2011 5:05:18 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

 Web-Based Corpus Software 127

5.3 A Brief Introduction to XML

A mark-up language is a collection of mechanisms that allow a corpus designer
to annotate data with various forms of meta-information in a standardized
and portable way. Probably the best known example of this kind of device is
the hypertext mark-up language (HTML), which allows its users to specify text
formatting and layout information. However, formatting mark-up languages
such as HTML do not suffi ce for corpus annotation. In fact, different cor-
pora designed by different people are likely to require different sets of tags,
depending on the sort of metadata their user communities require. What is
needed in addition to a standard syntax for annotation is a way of specifying
the vocabulary (i.e. tags), syntax and constraints of the annotation scheme
itself. The standard generalized mark-up language (SGML) was the product
of the fi rst comprehensive attempt to meet this need. SGML defi nes a set of
simple, basic conventions (syntax) that should apply universally to all SGML-
annotated documents,1 and mechanisms for constraining this basic syntax so
that it can be used in different contexts. Particular ways of constraining SGML
syntax are known as SGML applications. HTML itself is an SGML application.
Although the primary goal of SGML was standardization of document storage,
its development was also greatly infl uenced by the goals of SGML application
writers, namely: fl exibility and user-friendliness. The result was a complex for-
malism described in over 150 pages of an ISO standard (ISO8879, 1986). That
complexity ended up working against the primary goal of user-friendliness.
The success of a data storage standard depends on it being well supported
by software libraries and tools. In the case of SGML, library and application
developers often chose to support only those parts of the standard they found
essential or useful for certain applications, thus effectively undermining docu-
ment portability.

The extensible mark-up language, XML, originated from an attempt to rem-
edy this situation. Its designers started from SGML and simplifi ed it by remov-
ing a number of exotic, rarely used features. XML is simple and fl exible in
that it has no pre-defi ned set of tags. It provides a uniform means of encoding
metadata which is easily interpretable by humans as well as machines. It has
been widely adopted by industry and academia, and its development has been
coordinated by the World-wide Web Consortium (Bray et al. 2006). A large
number of software libraries and tools exist which support all aspects of XML
parsing and validation in most programming languages.

XML documents can be encoded in plain text, or in a variety of (language)
encoding standards. The default encoding is UTF-8, a Unicode standard that
supports virtually every character and ideograph from the world’s languages.
As with SGML, there is a basic (built-in) syntax which defi nes which documents
(or text fragments) are well formed. This basic syntax can be constrained in a
variety of ways, defi ning which documents are valid. Analogously to SGML, a

9781441115812_Ch05_Rev_txt_prf.indd 1279781441115812_Ch05_Rev_txt_prf.indd 127 4/23/2011 5:05:18 PM4/23/2011 5:05:18 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

128 Corpus-Based Translation Studies

specifi c way of constraining basic XML syntax yields what is called an XML
application. From a parsing perspective, well-formedness and validity are the most
important concepts in XML. XML also provides mechanisms for incorporat-
ing a form of semantics for XML documents with respect to XML applications.
In the following sections, we examine each of these aspects in some detail.

5.3.1 Well-Formed XML

The basic syntax to which all XML documents must conform consists of a
small set of simple rules governing essentially: the placement of tags, which
strings are allowed as element names, and how attributes should be attached
to elements. XML tags are text strings enclosed by angle brackets. Figure 5.1
shows two XML tags for author data: a begin tag and an end tag. This is a typ-
ical pattern in XML documents: annotated text appears between a begin tag
and an end tag. Begin tags start with <. End tags start with </. In general, XML
syntax is similar to HTML syntax. However, the following exceptions should
be noted: in XML one is allowed to “invent” one’s own tag names, start tags
must always be matched by end tags unless they are empty elements (as in
),
tags are case-sensitive (i.e. <author> is not the same as <Author>), and tag over-
lapping is not allowed.

XML documents can be represented as tree structures. Each XML document
must have (and each XML application must defi ne) a unique root element of
which all other elements are descendants. Figure 5.1 shows a well-formed XML
document and its corresponding syntax tree.

The kind of XML encoding shown in Figure 5.1 is called data oriented. It
resembles, in a way, the sort of structure one would fi nd in a database man-
agement system. XML is obviously also appropriate for annotation of ordinary
text, in which the structure is implicit, or more loosely encoded. This encod-
ing style is often referred to as narrative-organized. The distinction, however,

<author>

</author>

<name>
<first>Thomas</first>
<last>Bernhard</last>
</name>
<gender>male</gender>
<Nationality>German</Nationality>

author

gendername

first

Thomas Bernhard

last
male German

Nationality

Figure 5.1 A simple XML document represented as a tree

9781441115812_Ch05_Rev_txt_prf.indd 1289781441115812_Ch05_Rev_txt_prf.indd 128 4/23/2011 5:05:18 PM4/23/2011 5:05:18 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

 Web-Based Corpus Software 129

is purely pragmatic. Note the presence, in Figure 5.2, of data-oriented elem-
ents (data and name) within the narrative-organized author element. In TEC,
for instance, translated texts are encoded in a narrative-organized form, while
the metadata encoding of its header fi les is data oriented.

5.3.2 Basic Syntax Rules

Angle bracket delimited tags such as the ones shown above form the basic
units of XML markup. Pairs of tags and their contents are known as XML
elements. XML elements can also have attributes. Attributes are name-value
pairs attached to a begin tag, as shown in Example (1). An attribute name is
separated from its values by an equals sign. Values must always be enclosed in
single or double quotes.

(1) <author nationality=‘Irish’ sex=‘male’> Samuel Beckett </author>

The lexicon of an annotation scheme is the set of tokens which name its
elements and attributes. In XML, the form these names can take is precisely
defi ned by the following set of rules:

• Names may contain any alphanumeric characters (and also non-Latin char-
acters and ideograms) as well as the following punctuation characters: ‘_’,
‘-‘ and ‘.’.

• White spaces and other punctuation characters are not allowed
• Names may start only with letters (or ideograms), or the underscore

character.

Because certain characters play special roles in XML documents, their
print format needs to be escaped in certain contexts to avoid ambiguity. The
‘less-than’ symbol (<), for instance, is always interpreted as a marker that
an XML tag is about to appear. It must always be matched by a ‘greater-
than’ character (>). Therefore, a fragment such as <maths> 2 < x </maths>
is not well-formed XML. In such contexts, one needs to replace the < char-
acter by a special symbol sequence. The symbol sequence < serves this
purpose. This syntax (& . . . ;) allows XML users and document designers

<author>
The <Nationality>Irish</Nationality> writer <name> <fi rst>Samuel</fi rst>
<last>Beckett</last> </name> was born in <city>Dublin</city> in
<date><month>April</month> <year>1906</year></date>.
</author>

Figure 5.2 Narrative-organized XML fragment

9781441115812_Ch05_Rev_txt_prf.indd 1299781441115812_Ch05_Rev_txt_prf.indd 129 4/23/2011 5:05:19 PM4/23/2011 5:05:19 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

130 Corpus-Based Translation Studies

to specify any symbol. Symbols so defi ned are called entity references. The
logical consequence of using the ampersand character to signal the begin-
ning of an entity reference is that the ampersand symbol itself will need to
be escaped. Therefore we have & as the entity reference corresponding
to the ampersand character.

In addition to tags, angle brackets are used in XML to encode comments
and processing instructions. Comments can be added to improve the legibil-
ity of the document, and are simply ignored by applications. Comments start
with a <!– and end with a –> sequence. Example (2) shows an XML comment.
Comments are not allowed inside other comments or inside tags.

(2) <!– this is a comment –->
(3) <?robots index=‘yes’ follow=‘no’?>

XML documents can pass processing instructions to other applications by
enclosing them in tags of the following format: <? . . . ?>. An example of pro-
cessing instruction is shown in Example (3), which is actually used in websites
to suggest appropriate behaviour to indexing ‘software robots’ like the ones
used by most search engines.

Although comments and processing instructions are markup, they are
not XML elements. Therefore they can appear anywhere in the document.
An exception to this rule is the XML declaration, a processing instruction
which declares a number of facts about the document for use by parsers and
other applications. An XML declaration is not a compulsory part of an XML
document. However, if it is added, it must be the fi rst string to appear in
the document. Common attributes of XML declarations include: version, for
backward and forward compatibility purposes, encoding (if none specifi ed,
UTF-8 is assumed), and standalone, which tells the parser whether to look
for an external document defi nition. A typical XML declaration is shown
below:

(4) <?xml version=“1.0” encoding=“ISO-8859–1” standalone=“yes”?>

5.3.3 An Online XML Parser

Readers willing to follow a tutorial introduction to XML will fi nd a set of
resources at http://ronaldo.cs.tcd.ie/tec/CTS_SouthAfrica03/. One of the
resources available at the site is a simple, online XML parser. In order to use it,
one needs a web browser and Java Web Start,2 which is available with all recent
versions of the Java Run-time Environment. The data needed for all XML-
related exercises can be accessed through the website or downloaded directly
in an archive fi le.3 Exercises covering well-formedness of XML documents can

9781441115812_Ch05_Rev_txt_prf.indd 1309781441115812_Ch05_Rev_txt_prf.indd 130 4/23/2011 5:05:19 PM4/23/2011 5:05:19 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

 Web-Based Corpus Software 131

be found in data/01/ (a directory created by decompressing the archive fi le).
Descriptions of the exercises can be found in data/01/README.txt.

5.3.4 Document Type Defi nitions and XML Validation

In addition to the basic conventions described above, XML provides mech-
anisms to enable the syntax of an annotation scheme to be fully specifi ed.
In TEC, for instance, two schemes have been defi ned: techeader, for encoding
data about the corpus, including information about translations, translators,
authors and so on, and tectext, which supports light annotation of the corpus
itself in narrative-oriented style. Figure 5.3 shows a fragment of an actual TEC
header fi le.

An XML application such as tectext or techeader can be defi ned through docu-
ment type defi nitions (DTD). DTDs provide a formalism that allows document
designers to specify precisely which elements and entities may to appear in a
document, their hierarchical relationships, and their admissible contents and
attributes. The following are examples of constraints one can specify through
DTDs: ‘a book must have an author’, ‘an author must have a fi rst and a last
name, and optionally a middle name’, and so on.

Consider the DTD shown in Figure 5.4, for instance. Each line defi nes a valid
XML element. The string !ELEMENT is a reserved word. It is followed by an
element name (e.g. book) and a specifi cation of the element’s admissible chil-
dren in the XML tree. Children elements can simply be parsed non- annotated
data (including entity references) or other XML elements. The former is spe-
cifi ed through the reserved word #PCDATA. In Figure 5.4, title has book as
the parent element, and parsed data as children. Children can be specifi ed as
sequences or choices, or combinations of these. Sequences are comma-separated
lists of element names (and possibly #PCDATA), as in (title,author+,publisher?,

 <?xml version=“1.0” encoding=“ISO-8859–1” standalone=“no”?>
 <!DOCTYPE techeader SYSTEM “techeader.dtd”>
 <techeader>
 <title subcorpusid=“fi ction” fi lename=“fn000001.txt”>
 <subcorpus>fi ction</subcorpus>
 <collection>Restless Nights.</collection>
 </title>
 <section id=“fn000001.000”>
 <translator sexualOrientation=“heterosexual” gender=“male”>
 <name>Lawrence Venuti</name>
 <nationality description=“American”></nationality>
 <employment>Lecturer</employment>
 </translator>
 . . .
 </section>
 </techeader>

Figure 5.3 TEC header fi le fragment using techeader.dtd

9781441115812_Ch05_Rev_txt_prf.indd 1319781441115812_Ch05_Rev_txt_prf.indd 131 4/23/2011 5:05:19 PM4/23/2011 5:05:19 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

132 Corpus-Based Translation Studies

note), where title, author, publisher and note must appear in the order speci-
fi ed by the declaration. Choices are represented by lists of elements separated
by vertical bars, such as (#PCDATA|p), which specifi es that parsed data or <p/>
tags (and possibly both, in any order) can appear as children. The number of
children allowed is determined by special suffi xes appended to element names
in the DTD: ‘?’ for zero or one occurrence, ‘*’ for zero or more occurrences,
and ‘+’ for one or more occurrences. In the example below title must appear
fi rst, followed by one or more author elements, possibly followed by a publisher
and so on. One can also combine constraints by using parentheses. An elem-
ent name followed by XML reserved word ANY indicates that any (possibly
mixed) content may appear as text tagged by this element.

Among the declarations in Figure 5.4 is one which specifi es the allowable
values for the sex attribute of element author. This declaration is identifi ed by
an ATTLIST token. The element author requires an attribute sex, which may
take value ‘male’ or ‘ female’, but no other value. Supplying another value would
cause a validating parser to signal an error. Attributes appear inside element
tags. The following is a sample tectext tag which tells the user why a certain text
fragment should be ignored by the indexer: <omit desc=‘picture’/>. Figure 5.5
shows how this tag can be declared in a DTD.

An advantage of using attributes is that they allow contents to be more tightly
constrained. The type of data acceptable as attribute values can be specifi ed
through certain reserved words. DTDs also allow document designers to spe-
cify default values for attribute slots or restrictions on how such slots should
be handled (e.g. whether values are required or optional, fi xed, defi ned as
literals, etc.).

The user tells an XML parser how to validate a document by declaring the
document to be of a certain type, as defi ned by a DTD. This is done through
the DOCTYPE declaration, which provides a link between a document and its
syntax specifi cation. TEC headers, for instance, declare their DTD as follows:
<! DOCTYPE techeader SYSTEM ‘techeader.dtd’>. The word techeader indicates the
document’s root element, and the string following reserved word SYSTEM
indicates the location of the DTD. This could also be a fully specifi ed URL or,

<!ELEMENT book (title,author+,publisher?,note*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (fname,mname?,lname)>
<!ATTLIST author sex (male|female) #REQUIRED>
<!ELEMENT publisher ANY>
<!ELEMENT fname (#PCDATA)>
<!ELEMENT mname (#PCDATA)>
<!ELEMENT lname (#PCDATA)>
<!ELEMENT note (#PCDATA|p)>
 <!ELEMENT p EMPTY>

Figure 5.4 A simple DTD

9781441115812_Ch05_Rev_txt_prf.indd 1329781441115812_Ch05_Rev_txt_prf.indd 132 4/23/2011 5:05:19 PM4/23/2011 5:05:19 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

 Web-Based Corpus Software 133

in fact, any URI. An alternative to SYSTEM is PUBLIC, which is used for pub-
licly recognized DTDs, such as the DTD for the XML version of HTML.4

Despite the fact that they provide a simple and fl exible mechanism for defi n-
ing XML document syntax, DTDs have a number of limitations. First of all,
there is a question of consistency. Although similar, DTD syntax isn’t really
XML. Some consider this to be a serious drawback. In addition, many appli-
cations require more expressive ways of constraining document syntax than
DTDs can provide. This prompted the development of competing XML docu-
ment specifi cation schemes. The most widely used alternative to DTDs is XML
Schema, a formalism developed by the World Wide Web Consortium whose
syntax is itself XML-compliant.5

5.4 Adding Some Semantics to an Annotation Scheme

An attractive aspect of using XML for corpus annotation is that, once anno-
tated, documents can be viewed from a variety of perspectives ranging from
application needs to user tasks to corpus maintainer goals. Checking a text
for well-formedness helps prevent typos and other simple annotation errors.
Validating helps ensure consistency across the collection. Once these basic
requirements are met, the user or maintainer can interpret the annotated text
and benefi t from the corpus designer’s work in many ways. Although simple
visual inspection of raw XML might provide the user with greater understand-
ing of the data, the main benefi t of a consistently annotated XML document
derives from its amenability to processing by computers. Post-processing of
annotated text may facilitate different levels of analysis. Annotation could be
used, for instance, to control what should be indexed6 or displayed, how the
text should be laid out for presentation on a web browser or formatted for
printing and so on. Markup adds structure to text and ultimately enables appli-
cations to assign meaning to that structure. A general processing architecture
for annotated data is shown in Figure 5.6. First the original is annotated, then
the resulting document is checked for well-formedness and validity, and fi nally
the valid document is transformed for presentation, storage in a database,

<!ATTLIST omit

↓

declaration tag and
element name

#REQUIRED>

↓

default

desc

↓

attribute
name

CDATA

↓

data
type

Figure 5.5 DTD declaration of a desc attribute for a tectext omit element

9781441115812_Ch05_Rev_txt_prf.indd 1339781441115812_Ch05_Rev_txt_prf.indd 133 4/23/2011 5:05:19 PM4/23/2011 5:05:19 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

134 Corpus-Based Translation Studies

data visualization, or whatever other application need the annotation scheme
happens to support.

The semantics of a document structure can be defi ned in numerous ways.
Some of them are quite ad hoc, such as the way TEC handles storage of meta-
data into an effi cient database system in order to speed up retrieval within sub-
corpora. Others, however, have been standardized, as they range over a large
set of applications. These include formatting instructions, which prompted
the development of CSS, a language for defi ning Cascading Style Sheets (Bos
et al. 2009), as well as more powerful formalisms for specifying general docu-
ment transformations such as the Extensible Stylesheet Language (XSL) and
its formatting counterparts (Clark 1999).

CSS is a simple and widely used language for formatting of XML-annotated
text. CSS can also be used in conjunction with HTML documents, being sup-
ported by nearly all modern web browsers. Figure 5.7 illustrates how a CSS
can be used in conjunction with an XML document to produce a formatting
effect.

A CSS fi le consists of a list of elements followed by a list of style specifi ca-
tions to be applied to these elements. The most commonly defi ned properties
include the display attribute, which specifi es the way an element should be
laid out on the main document (as block, inline, list-item, table, or none), how
elements are formatted inside a table (inline-table, table-row, table-column,
table-cell etc.), and general lengths, such as font-size, border-width, width and
height. There are many other properties (e.g. font style and colours) whose
enumeration is outside the scope of this chapter.

In order to link an XML fi le with a given CSS one uses a specifi c processing
instruction of the form <?xml-stylesheet type=‘text/css’ href=‘mystyle.css’?>, where the
value of the href could have been any valid URI. If viewed on a CSS-compliant
web browser, an XML text containing the above processing instruction will be
formatted according to the rules specifi ed in mystyle.css.

Well-formed
XML
document

Valid
XML
document

Basic syntax,
parser

Validating
parser

DTD
Post-

processing

Presentation/
DB,
data exchange
etc

CSS
XSL

...

Figure 5.6 Overall XML processing architecture

9781441115812_Ch05_Rev_txt_prf.indd 1349781441115812_Ch05_Rev_txt_prf.indd 134 4/23/2011 5:05:20 PM4/23/2011 5:05:20 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

 Web-Based Corpus Software 135

In corpus applications, CSS can be used for formatting concordance lines
(i.e. with keywords aligned at the centre of the screen and contexts fl ushed left
and right), for example. The tutorial website contains an exercise on creating
a CSS fi le for formatting XML-annotated concordance lines.

XML semantics does not necessarily need to be implemented through style
sheets or any standard language, for that matter. A common form of post-
processing of XML documents is storage and retrieval of elements in a database
system. Since XML itself is not meant to be a database system, application-
 specifi c code is often used to load selected elements into a database manage-
ment system (DBMS) for effi cient access. The TEC system uses a native XML
DBMS (Meier 2002) to store its metadata.

Should one wish to learn more about XML, there are many books on XML,
ranging from short introductions to XML itself to comprehensive guides to
XML-related technologies. XML in a Nutshell (Harold and Means 2004) is a
good introductory book which manages to contain a reference guide to the
main XML-related technologies. Less readable but more detailed are the offi -
cial W3C technical reports (Clark 1999; Clark and DeRose 1999; Bray et al.
2006; Bos et al. 2009) which can be used as concise reference texts once one
has mastered the basics of XML.

5.5 Text Indexing and Retrieval

In addition to markup standards, corpus software in general needs to be able
to perform basic text indexing and retrieval functions. This section provides
an introduction to the main issues in indexing and retrieval. As before, the
contribution is set against a TEC backdrop, so the focus will be on the choices
made in the implementation of the TEC system.

Text retrieval involves four of basic operations: tokenization, indexing, com-
pression and search. Tokenization, or lexical analysis consists of deciding what
counts as a token (i.e. selecting strings for indexing). Indexing consists of stor-
ing information about where those tokens can be found. Compression aims
at keeping indices within acceptable space bounds. Search is the basic oper-
ation on which corpus analysis tools such as concordancing and collocation

Figure 5.7 XML fragment formatted as specifi ed by CSS rules

Sample XML source

The following
words <it>appear
in italics</it>

it {
font-style: italic
}

The following
words appear in
italics

Sample CSS rule Formatted text

+

9781441115812_Ch05_Rev_txt_prf.indd 1359781441115812_Ch05_Rev_txt_prf.indd 135 4/23/2011 5:05:20 PM4/23/2011 5:05:20 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

136 Corpus-Based Translation Studies

are built. The fi rst three operations are often performed offl ine, in a single
step, while search is usually performed online.

5.5.1 Tokenization

As mentioned above, tokenization is the process of converting a stream of char-
acters into a stream of tokens (or words). At a higher level of abstraction one
fi nds what is known as lexical analysis. The key question in tokenization is: what
counts as a word delimiter? In English, for instance, the best candidates are
blanks (including tabulation spaces, line breaks, etc.), hyphens and punctu-
ation characters. One might, in principle, defi ne a token as a string of characters
delimited by those characters. In certain cases, however, this defi nition is inad-
equate. The hyphens in state-of-the-art separate out legitimate tokens, whereas
the hyphen in B-52 does not. Punctuation characters can be equally deceptive,
as in 360 B.C. A related issue is how to deal with capital letters. Should White as in
The White House be indexed separately from white as in white cells? Sometimes cap-
italization provides valuable hints about collocation. The TEC system adopts the
approach of preserving as much information as possible: hyphenated words are
indexed both as individual words and as compounds, superfi cial lexical analysis
rules out tokens such as B in the examples above, and case is preserved through
the use of two separate indices (case-sensitive search is assumed by default).
Figure 5.8 shows the overall layout of the inverted index used in TEC.

Tokenization is an essential phase of corpus processing and involves reading
through the entire string of text and testing for pattern matches. Fortunately,
the computational cost of performing tokenization is relatively low. Finite-state
automata (FSA) can tokenize in linear time. Regular expressions provide con-
venient syntax for token matching which can be converted into suitable FSA.
Regular expressions are well supported in modern programming languages.
Interpreted languages such as Perl and Python provide built-in support for
regular expression matching. Other languages such as Java, C, and C++ pro-
vide a variety of libraries for dealing with pattern matching.

Figure 5.8 Structure of case-preserving inverted indices in TEC

Word list

whistling White
White
WHITE

whistlings
whit
white

Case Table File Table

file_1.txt pos1, pos2, …,
posn

pos1, pos2, …,

pos1, pos2, …,
posn

pos1, pos2, …,

file_m.txt

file_1.txt

file_k.txt

Text position table

…

…

…

9781441115812_Ch05_Rev_txt_prf.indd 1369781441115812_Ch05_Rev_txt_prf.indd 136 4/23/2011 5:05:20 PM4/23/2011 5:05:20 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

 Web-Based Corpus Software 137

A regular expression is a pattern that denotes a (possibly infi nite) class of
strings to match. Basic regular expression syntax is very simple. Its atomic
symbols are: e, which matches any character, and ε, which matches the empty
string. In addition to ordinary atomic symbols, regular expressions can con-
tain suffi x operators, binary operators and parentheses. Suffi x operators quan-
tify over atomic symbols much in the same way as suffi x operators quantify
over elements in DTDs (see Section 5.3.4). The suffi x operator * in e* denotes
a sequence of zero or more characters e. All the other suffi x operators can
be defi ned in terms of * (plus atomic symbols and binary operators). Binary
operators | and, are also analogous to their counterparts in DTDs. Regular
expression e1|e2 matches character e1 or character e2, while the expression
e1,e2 matches character e1 immediately followed by character e2 (and is usually
abbreviated as e1 e2). Parentheses are used for grouping sub-expressions.

The following simplifi cation might help illustrate the use of regular
expressions. Imagine a language whose alphabet consists entirely of two
letters: a and b, and in which white spaces are word separators. A regular
expression for tokenizing texts written in this language could look like this:
(a|b)(a|b)*_.

5.5.2 Indexing

In small corpora, it might be practical to use simple string or even regular
expression matching to determine the exact occurrences of a query, typically a
keyword. Although matching is reasonably fast, it is still not fast enough for use
in real-time with larger corpora. Even for medium-sized corpora such as TEC
one needs to use pre-compiled indices in order to attain an acceptable search
speed. Pre-compiling an index simply means matching all possible keywords
in advance (offl ine) and storing the results into a data structure that can be
searched more effi ciently online.

Text indexing techniques have been extensively used in the area of
Information Retrieval (IR). IR techniques can be straightforwardly adapted
for use in corpus processing, and there are many indexing techniques on
offer. Each has advantages and disadvantages. As with most applications, one’s
choice of indexing technique for corpus processing will depend on the size
of the database, search speed constraints, and availability of storage space.
In what follows, we focus on our choice for the TEC corpus, inverted indices,
and describe it in detail. However, we also say a few words about other com-
mon indexing strategies, with a view to contextualize this choice, and refer the
interested reader to Baeza-Yates and Ribeiro-Neto (1999) for further details.

Generally speaking, indexing strategies differ according to the data struc-
tures they use. Inverted indices (also known as inverted fi les) are tables whose
keys are words and whose values are lists of pointers to all positions in which
the key occurs in the corpus. In suffi x tree and suffi x array indexing, each

9781441115812_Ch05_Rev_txt_prf.indd 1379781441115812_Ch05_Rev_txt_prf.indd 137 4/23/2011 5:05:20 PM4/23/2011 5:05:20 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

138 Corpus-Based Translation Studies

position in the text is considered a suffi x. This facilitates search for phrases
and longer text fragments as well as word prefi xes. Suffi x arrays and trees allow
fast search but have heavy storage space requirements. Signature fi les, on the
other hand, have much lower space requirements at the price of search speed.
Signature fi les divide the text into blocks each of which is assigned a bit mask.
Words are mapped to these bit masks by means of a hashing function. The bit
map of a block is obtained by combining the signatures of all individual words
in the block. Therefore, searching for a word consists in fi nding all blocks
whose bit maps match the word’s signature and performing sequential search
on them. Search time in signature fi les is high compared to inverted indices
and suffi x trees. A comparison of the main indexing strategies is shown in
Figure 5.9. The graph indicates that although inverted fi les do not exhibit
the fastest performance, they represent a good compromise between space
requirements and search speed.

In TEC, index construction is very simple: as the text is tokenized, the exact
position of each token is recorded into a fi le (called the inverted index, or
inverted fi le). Figure 5.10 shows a possible index fi le consisting of a table map-
ping words to lists of word positions.

Inverted indices are generally space-effi cient. Space required to store the
vocabulary is rather small in comparison to corpus size. Heaps’ Law states that
the size of the vocabulary grows sub-linearly on the size of the text.7 Storing
the position of each word in the text, however, takes by far the most space and
might cause space requirements to increase greatly if one is not careful. The

Figure 5.9 Space and time complexity of most common indexing techniques,
adapted from Baeza-Yates and Ribeiro-Neto (1999)

suffix tries

suffix trees

suffix arraysn

m

m = size of search string
n = size of corpus
0 < γ < 1

m m log n 0.1n n nm

1

m + Σ

0.1n

n γ

n γ

indexed search

Inverted files

(full inversion)
Signature files

brute force

Time complexity

S
pa

ce
 c

om
pl

ex
ity

sequential search

(Boyer–Moore search)

m log m
m

9781441115812_Ch05_Rev_txt_prf.indd 1389781441115812_Ch05_Rev_txt_prf.indd 138 4/23/2011 5:05:21 PM4/23/2011 5:05:21 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

 Web-Based Corpus Software 139

number of positions to be stored is distributed according to Zipf’s Law. In its
simplest formulation, Zipf’s Law states that the most frequent word occurs x
times as frequently as the most frequent word. This pattern has been observed
in TEC, whose word distribution curve is shown in Figure 5.11. As inverted
indices consist of lists of integers each of which points to a position in the text,
keeping space requirements within acceptable bounds implies fi nding an eco-
nomical way of storing such lists.

A number of index compression techniques exist. In TEC, we have opted for
a simple but effective approach. Instead of storing absolute word positions, we
simply store the position of the fi rst occurrence followed by offsets pointing
to subsequent occurrences, as shown in Figure 5.12. This technique of storing
relative rather than absolute values achieves a 57 per cent index size reduction
for a 33,398-word fi le.

Each Word is analysed. The position of each word . . .

1 6 11 14 25 29 38 41 46

vocabulary positions

each → 1, 44

word → 6, 46

is → 11

 . . . → . . .

Figure 5.10 Sample text fragment (top) and corresponding inverted fi le (bot-
tom). Numbers indicate word positions

Figure 5.11 Word distribution in TEC

0

4e+05

3e+05

2e+05

1e+05

0e+00

100 200

Word rank according to frequency

N
o.

 o
cc

ur
en

ce
s

300 400 500

9781441115812_Ch05_Rev_txt_prf.indd 1399781441115812_Ch05_Rev_txt_prf.indd 139 4/23/2011 5:05:21 PM4/23/2011 5:05:21 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

140 Corpus-Based Translation Studies

Because most of the search task (tokenization and indexing) is really per-
formed offl ine, searching for a keyword via inverted indices is usually fast.
Actual performance varies depending on how the index is stored. If the index
is simply stored as a list sorted in lexicographical order, it can be searched in
binary mode which yields search time proportional to the size of the vocabu-
lary (i.e. O(log n)), where n is the number of words in the vocabulary. However,
if indices are stored as hash tables or as tries very fast retrieval can be achieved.
Search times drop to linear in the size of the word searched for (i.e. O(m),
where m is the size of the word).

The TEC system stores its inverted index in hash tables. In fact, in order to
optimize various kinds of queries the system builds a set of interrelated tables.
Its index structure is shown in Figure 5.13. The system allows case-sensitive as
well as case-insensitive search, so it creates separate entries for different forms

Figure 5.12 Schematic representation of two indexing strategies: uncompressed
index versus index compression used in TEC

word

key start positions

pos1, pos2, …, posn word

key relative positions

pos1, pos2 – pos1 …, posn – posn−1

Figure 5.13 TEC inverted index structure

key

canonical form
e.g. “house”

wform

key

wform1, …, wformn

variants
e.g. “house”, “House”, etc

file1, …, filen

files containing wform

wform no. of occurrences

wform + file

word by file positions

pos1, … posn – posn−1

(a)

(b)

(c)

(d)

9781441115812_Ch05_Rev_txt_prf.indd 1409781441115812_Ch05_Rev_txt_prf.indd 140 4/23/2011 5:05:21 PM4/23/2011 5:05:21 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

 Web-Based Corpus Software 141

of a word with respect to the capital letters that occur in it (Figure 5.13 (a)) but
also stores a canonical word form for case-insensitive searches (Figure 5.13 (b)).
Tokens are primarily associated to the fi les in which they occur, so start positions
are recorded for each fi le (Figure 5.13 (c)). Thus fi les can be easily removed or
re-indexed if needed. Finally, the system stores a pre-compiled frequency list
(Figure 5.13 (d)). This last table is redundant, as its content can be retrieved
from the other three tables. However, being able to access frequency informa-
tion instantly enables the system to provide immediate feedback to the user on
the progress of the search. This is an essential feature in web-based interfaces.

5.6 Data Storage and the Internet

The overall architecture of the internet is based on a client-server model.
In this kind of model, data are stored in a central location (the server) and
accessed through specialized software running on remote machines (the cli-
ents). This model exhibits two interesting features: it allows for resources to be
distributed while preserving data integrity (as data are centrally maintained),
and it allows for heterogeneity of access, as long as different clients agree to
abide by the protocol implemented by the server.

Why are these features interesting for corpus users? First of all, the client-
server model helps overcome copyright issues. A great deal of material of
interest to translation studies scholars is subjected to copyright restrictions.8
Distributing large volumes of copyrighted material as an integral corpus would
be very costly, if at all feasible. However, not all data need to be available in
order for corpus research to be carried out. Corpus researchers are mostly
interested in uncovering patterns, often aided by metadata, rather than sequen-
tial access to an entire text. The client-server model enables corpus maintain-
ers to restrict access to indirect retrieval of text fragments, thus protecting
copyright. By removing this barrier, the client-server model facilitates sharing
of resources among researchers, and might help provide the research commu-
nity with larger volumes and variety of data than has been available so far. In
addition, using the Web as a distributed storage medium has other advantages,
such as the existence and ubiquity of standards and ease of access.

On the other hand, the model also has potential disadvantages. The most
conspicuous disadvantage is the fact that the performance of a web-based cor-
pus tool tends to be poor if compared to single-user tools. The speed of execu-
tion of a web-based client is directly affected by the bandwidth and latency of
its communication channel to the server (the network bottleneck problem).
Although the general trend is for network connections to become faster and
more reliable, there is little corpus providers and developers of corpus clients
can do to alleviate the network bottleneck problem. Another problem is the
instability introduced by relying on a centralized server. If a server crashes, or
has its network connection interrupted, all clients are affected.

9781441115812_Ch05_Rev_txt_prf.indd 1419781441115812_Ch05_Rev_txt_prf.indd 141 4/23/2011 5:05:22 PM4/23/2011 5:05:22 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

142 Corpus-Based Translation Studies

5.7 The TEC Browser: A Tutorial Introduction

The TEC browser can be started directly via the Web.9 If accessed through a
web browser, the corpus browser will automatically detect and use the network
settings of the web browser. Because the TEC system uses the same communi-
cation protocol as a standard web server, the browser can operate seamlessly
across network security devices such as fi rewalls.

The main functionality of the TEC browser is the retrieval of concordances.
Concordances are retrieved by entering a query on a search box. The gen-
eral format of a query expression accepted by the browser is the following:
word_1(+([no_of_intervening_words])word_2 . . .), where brackets denote optional
items. The expression the+end, for example, will match all occurrences of the
immediately followed by end. Note that if [no_of_intervening_words] is omitted,
the system assumes it to be 0. So the+end is equivalent to the+[0]end. One can
retrieve all concordances for the phrases the very end, the end and the wrong end
simply by specifying the+[1]end as query expression.

In addition to word sequences and intervening words, the server also accepts
‘wildcards’. Wildcard syntax allows the user to select word prefi xes by append-
ing an asterisk to the query. For example, typing in test* will retrieve all words
which start with test, including test, testament testimony etc. Any word_n token
in the query syntax expression described above can be replaced by a word or
a wildcard. An expression such as a*+test* is a perfectly valid query which will
return a test, acid test, about testing, a testament among other phrases. The same
result could obviously be achieved by searching for, say, test* and sorting by
the left context. This last strategy, however, would be less effi cient since all
concordances would need to be transmitted to the client, and transmission
delay is the main factor affecting the performance of the browser, as discussed
above. Another factor that affects performance in searching for combined
keywords is the choice of the primary keyword. The following example illus-
trates this point. Suppose one is interested in retrieving the expression the
lonely heart. Although TEC contains a single instance of this phrase, the corpus
contains over half a million occurrences of the article the, over 3,500 occur-
rences of the word heart, and about 30 occurrences of the word lonely. If one
chooses the as the primary keyword, the system will have to read though over
half a million word sequences in order to fi nd that single instance. Searching
for heart would certainly improve things, but the best choice would be to take
lonely as the primary keyword, as this would reduce the computation to at most
30 comparisons. If a word sequence query such as the+lonely+heart is submitted,
the system will automatically choose lonely as the primary key, thus minimiz-
ing search time. It is nearly always a good idea to submit a sequence query if a
sequence of words is what one is after.

There are situations, however, in which one needs to be able to retrieve
all concordances for a given word and then explore possible collocations. A

9781441115812_Ch05_Rev_txt_prf.indd 1429781441115812_Ch05_Rev_txt_prf.indd 142 4/23/2011 5:05:22 PM4/23/2011 5:05:22 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

 Web-Based Corpus Software 143

sorting function can be used to support this kind of exploration. TEC allows
sorting by left and right contexts of various sizes. ‘Sort context’ pull-down
menus located next to the sort buttons allow the user to specify how many
words to the left or right of the keyword the list will be sorted by. Sort keywords
appear highlighted by colour on the concordance list. One could, for instance,
search for test, and then use sorting to group together occurrences of a test,
acid test, the test etc. Once a concordance list has been downloaded, sort can
be activated by the sort buttons. If one attempts to start sorting before down-
loading is complete, the system will ask whether the user wants to interrupt the
download operation and truncate the concordance list. Although sorting is
quite effi cient, approaching linear performance in certain cases, it illustrates
one of the advantages of a distributed architecture: since sorting is done dir-
ectly on concordances, it can be entirely performed by the client (i.e. the cor-
pus browser), thus freeing the server to perform searches.

Search can also be constrained by selection of sub-corpora. We have seen
above that the information in TEC header classifi es the various text fi les
according to number of attributes of its authors, translators and so on. These
attributes can also be used to defi ne sub-corpora. Since the original XML-
encoded metadata contained in the header fi les has been parsed and stored
in a native XML database (Meier 2002), sub-corpus selection can be done
through standard XPATH syntax. For example, the following query will select
a sub-corpus containing texts written by Belgian or Brazilian men, and trans-
lated by either British or Canadian women10:

(5) ($s/author/@gender=‘male’) and ($s/translator/@gender=‘female’) and
 ($s/author/nationality/@description=‘Belgian’ or
 $s/author/nationality/@description=‘Brazilian’) and
 ($s/translator/nationality/@description=‘British’ or
 $s/translator/nationality/@description=‘Canadian’)

The sub-corpora selection tool is activated via the ‘Options’ menu on the
TEC browser menu bar. Choosing ‘Select sub-corpus . . . ’ brings up the selec-
tion tool. The sub-corpus selection tool is a window which contains a number
of selection boxes representing metadata attributes and their possible range of
values. This allows a form of sub-corpus selection by direct manipulation. For
both authors and translators, the user can specify the author’s (or translator’s)
name directly, or a combination of the following attributes: gender, nationality
and sexual orientation. Selections are activated by highlighting the items on
the selection boxes. Alternatively, the user can enter XPATH queries such as
the one in Example (5) directly.

In addition to its core functionality of concordancing and sub-corpus selec-
tion, the TEC browser also supports Plug-ins. Plug-ins are tools that perform
specifi c functions, building on the main functionality provided by the core

9781441115812_Ch05_Rev_txt_prf.indd 1439781441115812_Ch05_Rev_txt_prf.indd 143 4/23/2011 5:05:22 PM4/23/2011 5:05:22 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

144 Corpus-Based Translation Studies

browser (GUI, network connection, concordancing, etc.). TEC has a few exter-
nal plug-ins which serves to illustrate the concept: a frequency list browser,
a corpus descriptor and dynamic concordance visualization tool. Other TEC
plug-ins currently under development include: selection by part-of-speech tags
and collocation analysis.

5.8 A Vision of Web-Based Corpus Software

Before discussing the future of the TEC system and perspectives on the
future of web-based corpus software in general we must make a few remarks
on the current status of the software. The current TEC architecture employs
the standard client-server model depicted in Figure 5.14. Whereas the basic
functionality for corpus indexing and access is handled at the server side,
the client handles not integral texts directly but concordances generated by
the server. The client itself is implemented in a modular architecture that
enables new functionality to be easily incorporated. The TEC client may also
communicate with a standard web (HTTP) server for requests that involve
direct retrieval of metadata. The reasons for splitting the server functional-
ity between a specialized concordance retrieval module and a generic con-
tent server are related to performance and security issues. The concordance
server can perform more effi ciently if it is dedicated to retrieving concord-
ance data. Furthermore, having a dedicated concordancer makes it easier to

Figure 5.14 The current architecture of the TEC system

TEC Server

Indices

Corpus

Headers

CGI Engine
HTTP server

Access log

Indexer

TEC Clinet

Sorting

Collocation

Selection

XML Parsing

Statistics

POS Tagging
TEC Clinet

TEC Clinet

Concordance
Server

Plug-ins

9781441115812_Ch05_Rev_txt_prf.indd 1449781441115812_Ch05_Rev_txt_prf.indd 144 4/23/2011 5:05:22 PM4/23/2011 5:05:22 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

 Web-Based Corpus Software 145

guarantee that copyrighted material will not be accidentally made available
on the internet.

The TEC tools have been implemented in Java, as part of a suite of lan-
guage processing tools called modnlp. The client can run as a stand-alone pro-
gram, or over the Web using Java Web Start11 technology. The entire system
has been developed as free software and is distributed under the GNU Public
License (GPL12). Code, licence and documentation are available at the modnlp
website.13

5.8.1 Processing Models and Web-Based Corpora

In computer science, the areas of parallel and distributed computing study
ways in which processors can be combined in order to improve the effi -
ciency and fl exibility of a system. In computational terms, distribution can
be achieved in two forms: distribution of data and distribution of processing
power. One uses the expression data stream to refer to the fl ow of data from
a processor to another, and analogously, processing stream when referring to
the fl ow of instructions from a processor to another. There are four classes of
(logically possible) architectures with respect to the distribution of computa-
tional resources: SISD (single instruction, single data streams), MIMD (mul-
tiple instruction, multiple data streams), SIMD (single instruction, multiple
data streams) and MISD (multiple instruction, single data streams). Although
these classes are primarily used as a taxonomy of computer hardware, at least
the fi rst two of them are relevant to the way corpus software works.

While the model adopted by most single-user tools for corpus indexing is
analogous to SISD, the TEC architecture depicted in Figure 5.14 can be con-
sidered as a MIMD architecture. A few differences must be noted, however.
In MIMD architectures, subtasks are usually allocated different processors on
the same (multiprocessor) machine. Coordination, data exchange and control
therefore often relies on shared memory-based inter-process communication
mechanisms. TEC processing tasks, on the other hand, will typically be allo-
cated to remote processors and communication will therefore use network-
based communication mechanisms and protocols (e.g. TCP/IP). For example,
in the current system, while the server processor is occupied in retrieving con-
cordances and sending them across the internet to the various clients, each
client might be displaying the concordances it has received, and placing other
requests (e.g. metadata) to the server. This type of loosely coupled interaction
is characteristic of distributed architectures.

In the context of our corpus-software application, we can perhaps establish a
further distinction within the MIMD class: single-server versus multiple-server
architectures. The current TEC system operates as a single-server architecture.
The entire corpus is stored at a central location and manipulated by a single

9781441115812_Ch05_Rev_txt_prf.indd 1459781441115812_Ch05_Rev_txt_prf.indd 145 4/23/2011 5:05:22 PM4/23/2011 5:05:22 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

146 Corpus-Based Translation Studies

processor. Although this kind of architecture helps improve access by remote
users, it does little, if anything, to improve information providing. Different
user groups that share an interest in corpus research have similar needs, some
of which might be met by in-house resources (e.g. a small-scale corpus of trans-
lated text). Corpus research often involves analysing data from different source
corpora. TEC users, for instance, use corpora like the BNC in order to compare
language usage in translated and non-translated English. Ideally, it should be
possible for diverse corpus sources to be pooled into a common framework
for corpus processing. One might argue that such framework could be imple-
mented as a single-server model simply by using a large, centralized corpus.
However, copyright issues and other practical constraints present problems
for centralized models. An alternative approach would be to develop a uni-
form interface that would mask the complexities and physical locations of vari-
ous, heterogeneous services, as suggested by Sharoff (2006). However, such an
approach would still require centralized management and manual updating.

Arguably, the essence of a multiple-server approach to corpus processing is to
enable geographically distributed research groups to build smaller-scale corpora
and share them through their own servers, on their own terms. Clients would
then be able to discover and query selected servers, and autonomously combine
the resulting responses into a coherent presentation. Some progress has been
made towards automating this process of service description and discovery in
the area of service-oriented computing (Papazoglou et al. 2008) but tools to
enable easy sharing of language resources in this manner are still scarce.

A typical usage scenario for this improved architecture would involve the
client selecting a set of corpora to be searched and broadcasting queries to
selected corpus servers, each server evaluating the query (independently and in
parallel), and the client receiving and combining the results from each server
into a fi nal result to be displayed to the user. An extension of the current archi-
tecture of the TEC system to implement this scenario is shown in Figure 5.15.

5.8.2 Challenges

The key challenges to truly distributed web-based corpus software are corpus
selection and server capability description.

Corpus discovery and selection can be framed in the context of over a dec-
ade of efforts aimed at encoding metadata. These efforts range from language-
specifi c standards such as the ones promoted by the Text Encoding Initiative
(Ide and Veronis 1995) to more ambitious proposals (e.g. Zanettin, this vol-
ume, Chapter 4). The issues involved are essentially how to encode metadata
and what information to encode. Although some progress has been made
regarding the former, the latter is still very much an open problem. The devel-
opment of credible standards such as XML helps solve the problem of how to

9781441115812_Ch05_Rev_txt_prf.indd 1469781441115812_Ch05_Rev_txt_prf.indd 146 4/23/2011 5:05:23 PM4/23/2011 5:05:23 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

 Web-Based Corpus Software 147

encode metadata so as to allow interoperability of different applications. New
XML-based standards are being developed which aim to do the same at the
semantic level. What is less clear is how this semantically structured informa-
tion can be used. A typical dilemma of metadata encoding concerns determin-
ing how strict its semantics should be. If the semantics is too restrictive, it will
yield over-specifi c metadata. If it’s too lax, it will make it diffi cult for software
clients to handle the potentially large variety of metadata created by the vari-
ous servers.

Solutions to these problems might well have to be domain-specifi c. In the
domain of translation studies, for instance, one could aim to defi ne an exten-
sible but minimal set of metadata items relevant to the community of corpus
users and build basic software functionality around it.

Describing operational capabilities of servers is an issue that appears to
have received considerably less attention from web researchers and language
resources organizations. This is perhaps due to the fact that it is generally
assumed that the sole function of a server of language resources is to make such
resources available to its users, via the web or by other means of distribution.
However, a quick look at the TEC server’s processing capabilities described
above suffi ces to reveal that this assumption is inadequate. In order to func-
tion properly, clients might need access to details such as whether the server

TEC Server

Indices

Corpus

Headers

CGI Engine

Corpus Server Y

Corpus Server X

HTTP server

Access log

Indexer

TEC Clinet

Sorting

Collocation

Selection

XML Parsing

Statistics

POS Tagging

Concordance
Server

Plug-ins

Client request
Server response
(concordances, etc)

Figure 5.15 Multiple-server TEC system architecture

9781441115812_Ch05_Rev_txt_prf.indd 1479781441115812_Ch05_Rev_txt_prf.indd 147 4/23/2011 5:05:23 PM4/23/2011 5:05:23 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

148 Corpus-Based Translation Studies

supports case-sensitive search, what exactly it considers as a token, whether it
supports search by part-of-speech tags, and numerous other features. Flexible,
loosely coupled distribution of corpora and corpus software cannot be achieved
unless it is supported by reliable capability description mechanisms. Emerging
technologies such as multi-agent systems and peer-to-peer computing might
play an important role in bringing about these mechanisms.

5.9 Conclusion

Although there are still many obstacles to the implementation of a model for
the processing of distributed corpora as a complement to existing systems for
distributed processing of corpora, recent developments in the areas of anno-
tation standards and internet technologies suggest that this goal is achievable.
This chapter has described several technologies currently used in web-based
applications which might help bring this to fruition.

Notes

 1 The term document has in this chapter, as in the SGML/XML literature, the con-
notation of a unit of data which is often, though not necessarily, of a textual
nature.

 2 http://java.sun.com/products/javawebstart/
 3 http://ronaldo.cs.tcd.ie/tec/CTS_SouthAfrica03/data.tgz
 4 <!DOCTYPE html PUBLIC ‘-//W3C//DTD XHTML 1.0 Strict//EN’ ‘http://

www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd’>
 5 See http://www.w3.org/XML/Schema for details.
 6 As in TEC, where omit tags are used to inhibit indexing of non-translated mater-

ial which would otherwise contaminate the corpus.
 7 In other words, vocabulary size v = O(nβ), where 0<β<1 and n = text size.
 8 TEC, for instance, consists largely of translated fi ction and biographies, all of

which is copyrighted material.
 9 http://ronaldo.cs.tcd.ie/tec2/jnlp/
10 The XQUERY selection statement is automatically added by the browser.
11 http://java.sun.com/products/javawebstart
12 http://www.gnu.org/
13 http://modnlp.berlios.de/

References

Baeza-Yates, Ricardo and Berthier Ribeiro-Neto (1999) Modern Information Retrieval,
London: Addison-Wesley-Longman.

9781441115812_Ch05_Rev_txt_prf.indd 1489781441115812_Ch05_Rev_txt_prf.indd 148 4/23/2011 5:05:23 PM4/23/2011 5:05:23 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

 Web-Based Corpus Software 149

Baker, Mona (1999) ‘The Role of Corpora in Investigating the Linguistic
Behaviour of Professional Translators’, International Journal of Corpus Linguistics
4(2): 281–98.

Bray, Tim, Jean Paoli and C. M. Sperberg-McQueen (eds) (2008) Extensible Markup
Language (XML), Version 1.0. W3C recommendation REC-xml-19980210.
Available online at: http://www.w3.org/TR/REC-xml

Bos, Bert, Tantek Çelik, Ian Hickson and Håkon Wium Lie (eds) (2009) Cascading
Style Sheets Level 2 Specifi cation. Available online at: http://www.w3.org/TR/
CSS2/ (accessed 31 May 2010).

Clark, Jim (ed.) (1999) XSL Transformations (XSLT) Version 1.0. W3C recommenda-
tion REC-xslt-19991116. Available online at: http://www.w3.org/TR/xslt/

Clark, Jim and Steve DeRose (eds) (1999) XML Path Language (XPath) V. 1.0. W3C
recommendation REC-xpath-19991116. Available online at: http://www.w3.org/
TR/1999/xpath/

Harold, Elliotte Rusty and W. Scott Means (2004) XML in a Nutshell, third edition.
Cambridge: O’Reilly & Associates, Inc.

Ide, Nancy M. and Jean Veronis (1995) Text Encoding Initiative: Background and
Contexts, Dordrecht, The Netherlands: Kluwer Academic Publishers.

ISO8879 (1986) Information Processing – Text and Offi ce Systems – Standard Generalized
Markup Language (SGML), International Organization for Standardization,
Geneva, Switzerland, fi rst edition.

Luz, Saturnino and Mona Baker (2000) ‘TEC: A Toolkit and API for Distributed
Corpus Processing’, in Steven Bird and Gary Simmons (eds) Proceedings of
Exploration-2000: Workshop on Web-Based Language Documentation and Description,
Philadelphia: University of Pennsylvania, 108–12.

Manning, Christopher D. and Heinrich Schütze (1999) Foundations of Statistical
Natural Language Processing, Cambridge and Massachusetts: The MIT Press.

Meier, Wolfgang (2002), ‘eXist: An Open Source Native XML Database’, Web-
Services, and Database Systems, Berlin: Springer-Verlag, 169–83.

Papazoglou, M. P., Paulo Traverso, Schachram Dustdar, Frank Leymann and
B. J. Krämer (2008) ‘Service-Oriented Computing: a Research Roadmap’,
International Journal of Cooperative Information Systems 17(2): 223–55.

Sharoff, Serge (2006) ‘A Uniform Interface to Large-Scale Linguistic Resources’,
in Proceedings of the Fifth Language Resources and Evaluation Conference, LREC
2006, Genoa, Italy, 538–42.

Zanettin, Federico (this volume, Chapter 4) ‘Hardwiring Corpus-Based Translation
Studies: Corpus Encoding’.

9781441115812_Ch05_Rev_txt_prf.indd 1499781441115812_Ch05_Rev_txt_prf.indd 149 4/23/2011 5:05:23 PM4/23/2011 5:05:23 PM

Luz, S. Web-based corpus software. In Corpus-based Translation Studies – Research and Applications, A. Kruger, K. Wall-

mach, and J. Munday, Eds. Continuum, 2011, ch. 5, pp. 124–149.

9781441115812_Ch05_Rev_txt_prf.indd 1509781441115812_Ch05_Rev_txt_prf.indd 150 4/23/2011 5:05:24 PM4/23/2011 5:05:24 PM

